Water-Soluble Glycosides from Ruta graveolens

Chien-Chih Chen,* Yu-Lin Huang, Fei-In Huang, Chun-Wen Wang, and Jun-Chih Ou

National Research Institute of Chinese Medicine, No. 155-1, Sec 2, Li Nung Street, Peitou, Taipei, Taiwan, Republic of China

Received December 8, 2000

An EtOH extract of the dried aerial parts of *Ruta graveolens* was suspended in water and then partitioned with EtOAc. Three new glycosides, 3'-sinapoyl-6-feruloylsucrose (**4**), methylcnidioside A (**5**), and methylpicraquassioside A (**6**), together with four known glycosides, 3',6-disinapoylsucrose (**1**), cnidioside A (**2**), rutin, and picraquassioside A (**3**), were isolated from the water-soluble part. Their structures were elucidated by interpretation of IR, MS, and 1D and 2D NMR spectra and comparison with literature data.

Ruta graveolens L. (Rutaceae) has been cultivated in many regions of the world because of its medicinal properties. The plant is reputedly used as an abortifacient or emmenagogue in many countries.¹ In Taiwan, the fresh aerial part of this plant is widely used to treat palpitation of the heart and circulatory disorders. Quinoline alkaloids,^{2,3} coumarins,^{4,5} lignans,⁶ and flavonoids^{1,7,8} have been isolated from *R. graveolens* and exhibit a variety of pharmacological activities. The present paper reports the isolation and structure elucidation of three new glycosides from the water-soluble part of *R. graveolens*.

An EtOH extract of the dried aerial parts of *R. graveolens* was suspended in H_2O and then partitioned with EtOAc. The H_2O -soluble part, successively chromatographed using Diaion HP-20, silica gel, Sephadex LH-20, and HPLC, afforded four known glycosides, 3',6-disinapoylsucrose (1),⁹ cnidioside A (2),¹⁰ rutin, and picraquassioside A (3),¹¹ and three new glycosides, 3'-sinapoyl-6-feruloylsucrose (4), methylcnidioside A (5), and methylpicraquassioside A (6).

1 $R_1 = R_2 = sinapoyl$ **4** $R_1 = feruloyl, R_2 = sinapoyl$

Compound **4** was obtained as yellow powder. Its molecular formula ($C_{33}H_{40}O_{18}$) was deduced from ESIMS and ¹³C NMR. The IR spectrum showed absorption bands due to hydroxyl (3386 cm⁻¹) and carbonyl (1701 cm⁻¹) groups. The ¹H NMR spectrum showed signals for two 1,2,3,5-tetra-substituted aromatic protons [δ 7.04 (2H, s)] and three ABX-type aromatic protons [δ 6.78 (1H, d, J = 8.5 Hz), 7.02 (1H, dd, J = 2.0 and 8.5 Hz), and 7.17 (1H, d, J = 2.0 Hz)]. The ¹H NMR also showed two pairs of *trans* double bond protons at δ 7.59 (1H, d, J = 16.0 Hz) and 6.44 (1H, d, J = 16.0 Hz), and three methoxyls at δ 3.87 (6H, 2 × OCH₃) and 3.88 (3H, OCH₃), indicating *trans*-sinapoyl and *trans*-feruloyl moieties. ¹³C NMR yielded δ 107.1 (d), 115.4 (d),

Figure 1. HMBC correlations of 4.

126.6 (s), 139.4 (s), 147.9 (d), 149.4 (s), 168.2 (s), and 56.9 (2 × OCH₃), indicating the *trans*-sinapoyl group, and δ 111.6 (d), 115.5 (d), 116.4 (d), 124.3 (d), 127.7 (s), 147.1 (d), 149.4 (s), 150.6 (s), 169.2 (s), and 56.5 (OCH₃) for the *trans*-feruloyl group, and 12 other carbons indicating sucrose.¹² Sucrose was confirmed using ¹H NMR by the characteristic doublet signal with a small coupling constant at δ 5.50 (1H, J = 3.0 Hz) assignable to the anomeric proton in the α -glucopyranose unit. The linkage of *trans*-sinapoyl and *trans*-feruloyl moieties with sucrose was confirmed by the HMBC correlations (Figure 1). On the basis of the above data, compound **4** is 3'-sinapoyl-6-feruloylsucrose.

Compound 5 was isolated as colorless powder. Its molecular formula (C18H22O9) was deduced from HRFABMS and ¹H and ¹³C NMR data. The IR spectrum showed absorption bands due to hydroxyl (3378 cm⁻¹) and carbonyl (1720 cm⁻¹) groups. The ¹H and ¹³C NMR spectra of 5 resembled those of cnidioside A (2)10 except for an additional methoxyl. ¹H NMR and ¹H-¹H COSY spectra showed signals due to an anomeric proton at δ 4.96 and four aromatic protons at δ 7.36, 7.37, 6.72, and 7.64, indicating that 5 was a 1,2-disubstituted benzofuran glycoside. This was also supported by the ¹³C NMR spectrum. Acid hydrolysis of 5 yielded glucose, which was identical with an authentic sample using the HPAEC system.¹³ ¹H and ¹³C NMR data also revealed two connected methylenes, one methoxyl, and one carbonyl, indicating that 5 possessed a methyl propionate moiety. An HMBC experiment and observation of NOEs between H-5 and H-6, between H₂-7 and H-6, and between H-3 and H-1' placed the substituent groups on the benzofuran ring. Thus, this compound was assigned structure 5 and accorded the trivial name methylcnidioside A.

^{*} To whom correspondence should be addressed. Tel: 886-2-28201999, ext. 6701. Fax: 886-2-28264276. E-mail: ccchen@cma23.nricm.edu.tw.

Table 1. ¹H NMR Data of Compounds 1 and 4 in CD₃OD

Н	1 ^a	4 <i>a</i>	Н	1 ^a	4 ^a	
sugar moiety				sugar moiety		
Glc-1	5.51 (d, 3.0)	5.50 (d, 3.0)	Fru-1	3.59 (d, 12.5)	3.58 (d, 12.0)	
2	3.49 (dd, 4.0, 9.5)	3.47 (dd, 4.0, 9.5)		3.63 (d, 12.5)	3.63 (d, 12.0)	
3	3.68 (t, 9.5)	3.67 (t, 9.5)	3	5.51 (d, 8.0)	5.49 (d, 8.0)	
4	3.33 overlapped	3.33 overlapped	4	4.50 (t, 8.0)	4.48 (t, 8.0)	
5	4.27 (br t, 9.5)	4.26 (br t, 9.5)	5	3.99 (ddd, 2.5, 7.0, 7.5)	3.98 (ddd, 2.5, 7.0, 7.5)	
6	4.22 (dd, 7.5, 11.0)	4.23 (dd, 7.0, 11.0)	6	3.84 overlapped	3.83 (dd, 3.5, 12.0)	
	4.67 (br d, 11.0)	4.64 (br d, 11.0)		3.91 (dd, 7.0, 12.0)	3.90 (dd, 7.0, 12.0)	
acid moiety (at C-6 of Glc)				acid moiety (at C-3 of Fru)		
2	6.86 (s)	7.17 (d, 2.0)	2	6.91 (s)	6.92 (s)	
5		6.78 (d, 8.5)	5			
6	6.86 (s)	7.02 (dd, 2.0, 8.5)	6	6.91 (s)	6.92 (s)	
7	7.58 (d, 16.0)	7.59 (d, 16.0)	7	7.66 (d, 16.0)	7.67 (d, 16,0)	
8	6.46 (d, 16.0)	6.44 (d, 16.0)	8	6.44 (d, 16.0)	6.43 (d, 16.0)	
OMe	3.83 (s)	3.88 (s)	OMe	3.86 (s)	3.87 (s)	

Compound **6** had the molecular formula $C_{19}H_{24}O_{10}$ as deduced by HRFABMS, ¹H and ¹³C NMR, 30 amu more than **5**. The additional mass corresponded to a methoxyl group, as was confirmed by ¹H NMR. ¹³C NMR data of **6** were very similar to those of **5**, except for the presence of an extra methoxyl group (C-6) and disappearance of H-6. NOEs between the methoxyl group (δ 4.05) and H₂-7, H-5 confirmed the methoxyl group at C-6. Thus, **6** was a glucoside of a benzofuran derivative and was named methylpicraquassioside A.

Experimental Section

General Experimental Procedures. Melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. IR spectra were recorded on a Nicolet Avatar 320 FT-IR spectrometer. ¹H and ¹³C NMR spectra were taken on a Varian Unity INOVA 500 spectrometer. UV spectra were measured on a Hitachi U-3200 spectrophotometer. Mass spectra were obtained on Finnigan LCQ and Finnigan MAT 95S spectrometers. Optical rotations were taken with a JASCO DIP-370 digital polarimeter. Analyses of sugars were carried out using a high-performance anion exchange chromatography (HPAEC) system (Dionex BioLC) equipped with a gradient pump, a pulsed amperometric detector (PAD-II), and an anionexchange column (Carbopac PA-10, 4.6 \times 250 mm).

Plant Material. The fresh aerial parts of *Ruta graveolens* L. were obtained from a market in Taipei, in June 1998, and were identified by Mr. Jun-Chi Ou, associate investigator of the National Research Institute of Chinese Medicine (NRICM). A voucher specimen (NRICM-98-048) is maintained in the herbarium of NRICM, Taipei, Taiwan.

Extraction and Isolation. The dried aerial parts of *R*. graveolens (6.5 kg) were extracted with EtOH (50 L \times 3). The extract was concentrated in vacuo to yield a dark brown mass, which was suspended in $H_2O(10 L)$ and then partitioned with EtOAc (10 L). The H₂O-soluble portion was subjected to Diaion HP-20 chromatography, successively eluting with H₂O/MeOH at 100:0, 80:20, 50:50, and 0:100. The fraction eluted with 50% MeOH was separated over Sephadex LH-20 ($H_2O/MeOH = 1:1$) to afford six fractions. Fraction 1 was repeatedly chromatographed over Sephadex LH-20 ($H_2O/MeOH = 2:1$) and silica gel (EtOAc/MeOH/H₂O = 20:5:5) columns to give rutin (1.5 g). Fraction 3 was repeatedly chromatographed over silica gel (EtOAc/MeOH = 10:1) and Sephadex LH-20 (MeOH) columns to give several fractions. Further HPLC purification (CH₃CN/ $H_2O = 20:80, 2.5 \text{ mL/min}; UV \text{ detector}, 254 \text{ nm})$ affored 1 (20.3) mg, $t_{\rm R}$ 11.8–15.7 min), **2** (8.5 mg, $t_{\rm R}$ 15.7–19.0 min), rutin ($t_{\rm R}$ 19–22.6 min), **3** (4.2 mg, $t_{\rm R}$ 22.6–26.2 min), **4** (13.3 mg, $t_{\rm R}$ 26.2–29.0 min), 5 (19.7 mg, $t_{\rm R}$ 36.1–38.3 min), and 6 (17.9 mg, $t_{\rm R}$ 42.9–45.7 min).

3',6-Disinapoylsucrose (1): yellow prisms, mp 133–135 °C (MeOH); ¹H NMR (CD₃OD, 500 MHz) see Table 1; ¹³C NMR

Table 2. ¹³C NMR Data (δ) of Compounds **1** and **4** in CD₃OD

С	1 ^a	4 ^a	С	1 ^a	4 ^a	
2	sugar moiet	у	sugar moiety			
Glc-1	92.6	92.7	Fru-1	65.7	65.7	
2	73.1	73.1	2	104.8	104.9	
3	75.1	75.1	3	79.3	79.4	
4	71.9	71.9	4	74.1	74.2	
5	72.5	72.5	5	84.3	84.4	
6	65.6	65.5	6	63.8	63.8	
acid moiety (at C-6 of Glc)			acid moiety (at C-3 of Fru)			
1	126.5	127.7	1	126.6	126.6	
2	106.9	111.6	2	107.0	107.1	
3	149.3	149.4	3	149.4	149.4	
4	139.4	150.6	4	139.6	139.4	
5	149.3	116.4	5	149.4	149.4	
6	106.9	124.3	6	107.0	107.1	
7	147.3	147.1	7	147.9	147.9	
8	115.8	115.5	8	115.4	115.4	
9	169.1	169.2	9	168.3	168.2	
OMe	56.9	56.5	OMe	56.8	56.9	

^a Assigned with the aid of HMQC and HMBC spectra.

Table 3. ¹³C NMR Data (δ) of Compounds **2**, **3**, **5**, and **6**

		(), · · · · · · · · · · · · · · · · · · ·	, , , , ,	
С	2 ^a	3 ^a	5^{b}	6 ^b
1	126.6	119.0	127.2	116.6
2	153.5	155.9	155.0	155.6
3	98.4	95.2	99.9	94.7
3a	153.5	155.9	155.9	157.0
4	145.0	145.2	146.0	144.7
5	106.3	106.3	107.4	105.6
5a	120.8	113.8	123.3	114.0
6	120.6	151.8	122.2	152.3
7	26.3	21.9	27.4	20.5
8	35.7	39.2	35.6	35.2
9	176.0	178.5	176.0	176.4
1′	101.7	104.1	103.2	103.2
2'	73.4	74.8	75.0	75.0
3′	77.1	78.6	78.3	78.2
4'	69.9	71.5	71.4	71.4
5′	76.6	78.0	78.2	78.2
6'	60.8	62.4	62.6	62.6
OCH_3		61.1	52.0	52.1
				62.6

^{*a*} In DMSO- d_6 . ^{*b*} In CD₃OD.

(CD₃OD, 125 MHz) see Table 2; ESIMS (positive-ion model) m/z 777 (MNa⁺).

Cnidioside A (2): amorphous powder, spectroscopic data agreed with those reported;¹⁰ ¹³C NMR (DMSO- d_6 , 125 MHz), Table 3; ESIMS m/z 367 [M – H][–], 205 [M – Glu-H][–].

Picraquassioside A (3): amorphous powder, spectroscopic data agreed with those reported;¹¹ ¹³C NMR (DMSO- d_6 , 125 MHz), Table 3; ESIMS m/z 397 [M – H][–], 235 [M – Glu-H][–].

3'-Sinapoyl-6-feruloylsucrose (4): amorphous powder; $[\alpha]_D^{25}$ -69.11° (*c* 0.34, MeOH); IR ν_{max} (in MeOH) 3386, 1701,

1630, 1597, 1517, 1282, 1055 cm⁻¹; UV (MeOH) λ_{max} (log ϵ) 328 (4.43), 238 (4.32), 202 (4.53) nm; ¹H NMR (CD₃OD, 500 MHz), Table 1; ¹³C NMR (CD₃OD, 125 MHz), Table 2; HMBC correlations, Figure 1; ESIMS m/z 724 [M]⁺

Methylcnidioside A (5): glassy powder, mp 146–147 °C; $[\alpha]_{D}^{25}$ –46.87° (*c* 0.32, MeOH); IR ν_{max} (KBr) 3540, 3378, 1720, 1629, 1070 cm⁻¹; UV (MeOH) λ_{max} (log ϵ) 278 (3.81), 251 (4.12), 244 (4.13), 206 (4.59) nm; ¹H NMR (CD_3OD , 500 MHz) δ 2.70 (2H, m, H₂-8), 3.07 (2H, m, H₂-7), 3.44 (1H, m, H-4'), 3.53 (3H, m, H-2', H-3', H-5'), 3.65 (3H, s, 9-OCH₃), 3.74 (1H, dd, J = 5.5 and 12.0 Hz, H-6'), 3.94 (1H, dd, J = 2.0 and 12.0 Hz, H-6'), 4.96 (1H, d, J = 7.0 Hz, H-1'), 6.72 (1H, d, J = 2.2 Hz, H-5), 7.36 (1H, s, H-3 or H-6), 7.37 (1H, s, H-6 or H-3), 7.64 (1H, d, J = 2.2 Hz, H-4); ¹³C NMR (CD₃OD, 125 MHz), Table 3; HMBC correlations 9-OCH₃/C-9; H-7/C-9, C-6, C-2, C-1, C-8; H-8/C-9, C-1, C-7; H-1'/C-2; H-5/C-3a, C-4,C-5a; ESIMS m/z 405 (MNa⁺); FABMS m/z 405 (MNa⁺), 383 (MH⁺); HRFABMS m/z 383.1342 (MH⁺, calcd for $C_{18}H_{23}O_9$).

Methylpicraquassioside A (6): glassy powder, mp 67– 69 °C; $[\alpha]_D^{\overline{2}5}$ –58.82° (*c* 0.34, MeOH); IR ν_{max} (KBr) 3650, 3384, 1701, 1623, 1074 cm $^{-1};$ UV (MeOH) $\lambda_{\rm max}$ (log $\epsilon) 278$ (3.37), 251 (4.08), 214 (4.59) nm; ¹H NMR (CD₃OD, 500 MHz) δ 2.51– 2.58 (2H, m, H₂-8), 3.04 (2H, m, H₂-7), 3.40 (1H, m, H-4'), 3.50 (4H, m, H-2', H-3', H-5'), 3.65 (3H, s, 9-OCH₃), 3.71 (1H, dd, J = 5.5 and 12.5 Hz, H-6'), 3.90 (1H, dd, J = 2.0 and 12.5 Hz, H-6'), 4.05 (3H, s, 6-OCH₃), 4.91 (1H, d, J = 7.5 Hz, H-1'), 6.95 (1H, d, J = 2.5 Hz, H-5), 7.10 (1H, s, H-3), 7.67 (1H, d, J = 2.5 Hz, H-4); ¹³C NMR (CD₃OD, 125 MHz), Table 3; HMBC correlations 9-OCH₃/C-9; H-7/C-9, C-6, C-2, C-1, C-8; H-8/C-9, C-1, C-7; 6-OCH₃/C-6; H-1'/C-2; H-3/C-2, C-3a, C-1, C-5a; H-5/C-3a, C-4,C-5a; ESIMS m/z 413 (MH⁺), 395, 358, 316, 275, 251; FABMS m/z 413 (MH+), 391; HRFABMS m/z 413.1448 $(MH^+, calcd for C_{19}H_{25}O_{10}).$

Acknowledgment. This work was supported by a grant from the National Science Council of the Republic of China (NSC-89-2134-B-077-009).

References and Notes

- (1) Kong, Y. C.; Lau, C. P.; Wat, K. H.; Ng, K. H.; But, P. P. H.; Cheng, K. F.; Waterman, P. G. *Planta Med.* **1989**, *55*, 176–178.
- (2) Paulini, H.; Popp, R.; Schimmer, O.; Ratka, O.; Roder, E. Planta Med. 1991. 57, 59-61. (3) Paulini, H.; Waibel, R.; Kiefer, J.; Schimmer, O. Planta Med. 1991,
- 57, 82-83. (4) Rei, J.; Szendrei, K.; Minker, E.; Novak, I. Tetrahedron Lett. 1968,
- 4395-4396. (5) Rosa, Z.; Mester, I.; Reisch, J.; Szendrei, K. Planta Med. 1989, 55,
- 68 69(6) Reisch, J.; Szendrei, K.; Novak, I.; Minker, E. Pharmazie 1970, 25,
- 435-436; Chem. Abstr. 1971, 74, 10363n. (7) Ulubelen, A.; Ertugrul, L.; Birman, H.; Yigit, R.; Erseven, G.; Olgac,
- V. Phytother. Res. 1994, 8, 233-236.
- Bautz, C.; Bohuslavizki, K. H.; Hansel, W.; Koppenhofer, E. *Planta Med.* **1989**, *55*, 649.
 Miyase, T.; Noguchi, H.; Chen, X. M. J. Nat. Prod. **1999**, *62*, 993–
- 99**6**. (10) Yahara, S.; Sugimura, C.; Nohara, T.; Niiho, Y.; Nakajima, Y.; Ito,
- H. Shoyagaku Zasshi 1993, 47, 74-78. (11) Yoshikawa, K.; Sugawara, S.; Arihara, S. Phytochemistry 1995, 40,
- 253 256(12) Shimazki, N.; Mimaki, Y.; Saahida, Y. Phytochemistry 1991, 30, 1475-1480.
- (13) Paskach, T. J.; Lieker, H. P.; Reilly, P. J.; Thielecke, K. Carbohydr. Res. 1991, 215, 1-14.

NP000582Y