Water-Soluble Glycosides from Ruta graveolens

Chien-Chih Chen,* Yu-Lin Huang, Fei-In Huang, Chun-Wen Wang, and J un-Chih Ou
National Research Institute of Chinese Medicine, No. 155-1, Sec 2, Li Nung Street, Peitou, Taipei, Taiwan, Republic of China
Received December 8, 2000
An EtOH extract of the dried aerial parts of Ruta graveol ens was suspended in water and then partitioned with EtOAc. Three new glycosides, 3'-sinapoyl-6-feruloylsucrose (4), methylcnidioside A (5), and methyl picraquassioside A (6), together with four known glycosides, $3^{\prime}, 6$-disinapoylsucrose (1), cnidioside A (2), rutin, and picraquassioside A (3), were isolated from the water-soluble part. Their structures were elucidated by interpretation of IR, MS, and 1D and 2D NMR spectra and comparison with literature data.

Ruta graveolens L. (Rutaceae) has been cultivated in many regions of the world because of its medicinal properties. The plant is reputedly used as an abortifacient or emmenagogue in many countries. ${ }^{1}$ In Taiwan, the fresh aerial part of this plant is widely used to treat pal pitation of the heart and circulatory disorders. Quinoline alkaloids, ${ }^{2,3}$ coumarins, ${ }^{4,5}$ lignans, ${ }^{6}$ and flavonoids ${ }^{1,7,8}$ have been isolated from R. graveolens and exhibit a variety of pharmacological activities. The present paper reports the isolation and structure elucidation of three new glycosides from the water-soluble part of R. graveolens.

An EtOH extract of thedried aerial parts of R. graveolens was suspended in $\mathrm{H}_{2} \mathrm{O}$ and then partitioned with EtOAc. The $\mathrm{H}_{2} \mathrm{O}$-sol uble part, successively chromatographed using Diaion HP-20, silica gel, Sephadex LH-20, and HPLC, afforded four known glycosides, 3',6-disinapoylsucrose (1),9 cnidioside A (2), ${ }^{10}$ rutin, and picraquassioside A (3), ${ }^{11}$ and three new glycosides, 3'-si napoyl-6-feruloylsucrose (4), methylcnidioside A (5), and methyl picraquassioside A (6).

$2 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
$3 \mathrm{R}_{1}=\mathrm{H}_{1} \mathrm{R}_{2}=\mathrm{OCH}_{3}$
$5 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
$6 \mathrm{R}_{1}=\mathrm{OCH} \mathrm{O}_{3}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$
$1 \mathrm{R}_{1}=\mathrm{R}_{2}=$ sinapoy
$4 R_{1}=$ feruloyl, $R_{2}=$ sinapoyl
Compound 4 was obtained as yellow powder. Its molecular formula ($\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{18}$) was deduced from ESIMS and ${ }^{13} \mathrm{C}$ NMR. The IR spectrum showed absorption bands due to hydroxyl ($3386 \mathrm{~cm}^{-1}$) and carbonyl ($1701 \mathrm{~cm}^{-1}$) groups. The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals for two 1,2,3,5-tetrasubstituted aromatic protons [$\delta 7.04(2 \mathrm{H}, \mathrm{s})$] and three ABX-type aromatic protons [$\delta 6.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.02$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0$ and 8.5 Hz), and $7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz})$]. The ${ }^{1} \mathrm{H}$ NMR also showed two pairs of trans double bond protons at $\delta 7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz})$ and $6.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $16.0 \mathrm{~Hz}) ; \delta 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz})$ and $6.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $16.0 \mathrm{~Hz})$, and three methoxyls at $\delta 3.87\left(6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right)$ and $3.88\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, indicating trans-sinapoyl and transferuloyl moieties. ${ }^{13} \mathrm{C}$ NMR yielded $\delta 107.1$ (d), 115.4 (d),

[^0]

Figure 1. HMBC correlations of 4.
126.6 (s), 139.4 (s), 147.9 (d), 149.4 (s), 168.2 (s), and 56.9 $\left(2 \times \mathrm{OCH}_{3}\right)$, indicating the trans-sinapoyl group, and δ 111.6 (d), 115.5 (d), 116.4 (d), 124.3 (d), 127.7 (s), 147.1 (d), 149.4 (s), 150.6 (s), $169.2(\mathrm{~s})$, and $56.5\left(\mathrm{OCH}_{3}\right)$ for the transferuloyl group, and 12 other carbons indicating sucrose. ${ }^{12}$ Sucrose was confirmed using ${ }^{1} \mathrm{H}$ NMR by the characteristic doublet signal with a small coupling constant at $\delta 5.50$ (1H, $\mathrm{J}=3.0 \mathrm{~Hz}$) assignable to the anomeric proton in the α-glucopyranose unit. The linkage of trans-sinapoyl and trans-feruloyl moieties with sucrose was confirmed by the HMBC correlations (Figure 1). On the basis of the above data, compound 4 is 3^{\prime}-sinapoyl-6-feruloylsucrose.
Compound 5 was isolated as colorless powder. Its molecular formula $\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{9}\right)$ was deduced from HRFABMS and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. The IR spectrum showed absorption bands due to hydroxyl ($3378 \mathrm{~cm}^{-1}$) and carbonyl ($1720 \mathrm{~cm}^{-1}$) groups. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 resembled those of cnidioside A (2) ${ }^{10}$ except for an additional methoxyl. ${ }^{1} \mathrm{H} N \mathrm{NR}$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra showed signals due to an anomeric proton at $\delta 4.96$ and four aromatic protons at $\delta 7.36,7.37,6.72$, and 7.64 , indicating that 5 was a 1,2-disubstituted benzofuran glycoside. This was also supported by the ${ }^{13} \mathrm{C}$ NMR spectrum. Acid hydrolysis of $\mathbf{5}$ yielded glucose, which was identical with an authentic sample using the HPAEC system. ${ }^{13}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data al so revealed two connected methylenes, one methoxyl, and one carbonyl, indicating that 5 possessed a methyl propionate moiety. An HMBC experiment and observation of NOEs between $\mathrm{H}-5$ and $\mathrm{H}-6$, between $\mathrm{H}_{2}-7$ and $\mathrm{H}-6$, and between $\mathrm{H}-3$ and $\mathrm{H}-\mathrm{I}^{\prime}$ placed the substituent groups on the benzofuran ring. Thus, this compound was assigned structure $\mathbf{5}$ and accorded the trivial name methylcnidioside A.

Table 1. ${ }^{1} \mathrm{H}$ NMR Data of Compounds $\mathbf{1}$ and $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{OD}$

H	$1{ }^{\text {a }}$	$4^{\text {a }}$	H	$1{ }^{\text {a }}$	$4^{\text {a }}$
Glc-1 5.51 (d, 30,0) moiety 5.50 (d 3.0)			sugar moiety		
			Fru-1	3.59 (d, 12.5)	3.58 (d, 12.0)
2	3.49 (dd, 4.0, 9.5)	3.47 (dd, 4.0, 9.5)		3.63 (d, 12.5)	3.63 (d, 12.0)
3	3.68 (t, 9.5)	3.67 (t, 9.5)	3	5.51 (d, 8.0)	5.49 (d, 8.0)
4	3.33 overlapped	3.33 overlapped	4	4.50 (t, 8.0)	4.48 (t, 8.0)
5	4.27 (br t, 9.5)	4.26 (br t, 9.5)	5	3.99 (ddd, 2.5, 7.0, 7.5)	3.98 (ddd, 2.5, 7.0, 7.5)
6	4.22 (dd, 7.5, 11.0)	4.23 (dd, 7.0, 11.0)	6	3.84 overlapped	3.83 (dd, 3.5, 12.0)
	4.67 (br d, 11.0)	4.64 (br d, 11.0)		3.91 (dd, 7.0, 12.0)	3.90 (dd, 7.0, 12.0)
acid moiety (at C-6 of GIc)				acid moiety (at C-3 of Fru)	
2	6.86 (s)	7.17 (d, 2.0)	2	6.91 (s)	6.92 (s)
5		6.78 (d, 8.5)	5		
6	6.86 (s)	7.02 (dd, 2.0, 8.5)	6	6.91 (s)	6.92 (s)
7	7.58 (d, 16.0)	7.59 (d, 16.0)	7	7.66 (d, 16.0)	7.67 (d, 16,0)
8	6.46 (d, 16.0)	6.44 (d, 16.0)	8	6.44 (d, 16.0)	6.43 (d, 16.0)
OMe	3.83 (s)	3.88 (s)	OMe	3.86 (s)	3.87 (s)

Compound 6 had the molecular formula $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{10}$ as deduced by HRFABMS, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, 30 amu more than 5. The additional mass corresponded to a methoxyl group, as was confirmed by ${ }^{1} \mathrm{H}$ NMR. ${ }^{13} \mathrm{C}$ NMR data of 6 were very similar to those of 5 , except for the presence of an extra methoxyl group ($\mathrm{C}-6$) and disappearance of $\mathrm{H}-6$. NOEs between the methoxyl group ($\delta 4.05$) and $\mathrm{H}_{2}-7, \mathrm{H}-5$ confirmed the methoxyl group at C-6. Thus, 6 was a glucoside of a benzofuran derivative and was named methyl picraquassioside A.

Experimental Section

General Experimental Procedures. Melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. IR spectra were recorded on a Nicolet Avatar 320 FT-IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were taken on a Varian Unity INOVA 500 spectrometer. UV spectra were measured on a Hitachi U-3200 spectrophotometer. Mass spectra were obtained on Finnigan LCQ and Finnigan MAT 95S spectrometers. Optical rotations were taken with a J ASCO DIP-370 digital polarimeter. Analyses of sugars were carried out using a high-performance anion exchange chromatography (HPAEC) system (Dionex BioLC) equipped with a gradient pump, a pulsed amperometric detector (PAD-II), and an anionexchange column (Carbopac PA-10, $4.6 \times 250 \mathrm{~mm}$).

Plant Material. The fresh aerial parts of Ruta graveolens L. were obtained from a market in Tai pei, in J une 1998, and were identified by Mr. J un-Chi Ou, associate investigator of the National Research Institute of Chinese Medicine (NRICM). A voucher specimen (NRICM-98-048) is maintained in the herbarium of NRICM, Taipei, Taiwan.

Extraction and Isolation. The dried aerial parts of R. graveolens (6.5 kg) were extracted with EtOH ($50 \mathrm{~L} \times 3$). The extract was concentrated in vacuo to yield a dark brown mass, which was suspended in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~L})$ and then partitioned with $\mathrm{EtOAc}(10 \mathrm{~L})$. The $\mathrm{H}_{2} \mathrm{O}$-soluble portion was subjected to Diaion HP-20 chromatography, successively eluting with $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ at 100:0, $80: 20,50: 50$, and $0: 100$. The fraction eluted with 50% MeOH was separated over Sephadex LH-20 ($\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}=1: 1$) to afford six fractions. Fraction 1 was repeatedly chromatographed over Sephadex $\mathrm{LH}-20\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}=2: 1\right)$ and silica gel (EtOAc/MeOH/H2O = 20:5:5) columns to give rutin (1.5 g). Fraction 3 was repeatedly chromatographed over silica gel (EtOAc/MeOH = 10:1) and Sephadex LH-20 (MeOH) columns to give several fractions. Further HPLC purification ($\mathrm{CH}_{3} \mathrm{CN} /$ $\mathrm{H}_{2} \mathrm{O}=20: 80,2.5 \mathrm{~mL} / \mathrm{min}$; UV detector, 254 nm) affored $\mathbf{1}$ (20.3 $\mathrm{mg}, \mathrm{t}_{\mathrm{R}} 11.8-15.7 \mathrm{~min}$), $2\left(8.5 \mathrm{mg}, \mathrm{t}_{\mathrm{R}} 15.7-19.0 \mathrm{~min}\right)$, rutin (t_{R} $19-22.6 \mathrm{~min}), 3\left(4.2 \mathrm{mg}, \mathrm{t}_{\mathrm{R}} 22.6-26.2 \mathrm{~min}\right), 4\left(13.3 \mathrm{mg}, \mathrm{t}_{\mathrm{R}}\right.$ $26.2-29.0 \mathrm{~min}), 5\left(19.7 \mathrm{mg}, \mathrm{t}_{\mathrm{R}} 36.1-38.3 \mathrm{~min}\right.$), and 6 (17.9 $\mathrm{mg}, \mathrm{t}_{\mathrm{R}} 42.9-45.7 \mathrm{~min}$).

3',6-Disinapoylsucrose (1): yellow prisms, mp 133-135 ${ }^{\circ} \mathrm{C}(\mathrm{MeOH})$; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ seeTable $1 ;{ }^{13} \mathrm{C}$ NMR

Table 2. ${ }^{13} \mathrm{C}$ NMR Data (δ) of Compounds $\mathbf{1}$ and $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{OD}$

C	$\mathbf{1}^{\mathrm{a}}$	$\mathbf{4}^{\mathrm{a}}$		C	$\mathbf{1}^{\mathrm{a}}$	
	sugar moiety			$\mathbf{4}^{\mathrm{a}}$		
Glc-1	92.6	92.7	Fru-1	sugar moiety		
2	73.1	73.1	2	65.7	65.7	
3	75.1	75.1	3	104.8	104.9	
4	71.9	71.9	4	79.3	79.4	
5	72.5	72.5	5	74.1	74.2	
6	65.6	65.5	6	84.3	84.4	
acid moiety (at C-6 of Glc)					acid moiety (at C-3 of Fru)	
1	126.5	127.7	1	126.6	126.6	
2	106.9	111.6	2	107.0	107.1	
3	149.3	149.4	3	149.4	149.4	
4	139.4	150.6	4	139.6	139.4	
5	149.3	116.4	5	149.4	149.4	
6	106.9	124.3	6	107.0	107.1	
7	147.3	147.1	7	147.9	147.9	
8	115.8	115.5	8	115.4	115.4	
9	169.1	169.2	9	168.3	168.2	
OMe	56.9	56.5	OMe	56.8	56.9	

${ }^{\text {a }}$ Assigned with the aid of HMQC and HMBC spectra.
Table 3. ${ }^{13} \mathrm{C}$ NMR Data (δ) of Compounds 2, 3, 5, and 6

C	$\mathbf{2}^{a}$	$\mathbf{3}^{a}$	$\mathbf{5}^{b}$	$\mathbf{6}^{b}$
1	126.6	119.0	127.2	116.6
2	153.5	155.9	155.0	155.6
3	98.4	95.2	99.9	94.7
$3 a$	153.5	155.9	155.9	157.0
4	145.0	145.2	146.0	144.7
5	106.3	106.3	107.4	105.6
5 a	120.8	113.8	123.3	114.0
6	120.6	151.8	122.2	152.3
7	26.3	21.9	27.4	20.5
8	35.7	39.2	35.6	35.2
9	176.0	178.5	176.0	176.4
1^{\prime}	101.7	104.1	103.2	103.2
2^{\prime}	73.4	74.8	75.0	75.0
3^{\prime}	77.1	78.6	78.3	78.2
4^{\prime}	69.9	71.5	71.4	71.4
5^{\prime}	76.6	78.0	78.2	78.2
6^{\prime}	60.8	62.4	62.6	62.6
OCH $_{3}$		61.1	52.0	52.1
				62.6

${ }^{\mathrm{a}} \ln \mathrm{DMSO}-\mathrm{d}_{6} .{ }^{\mathrm{b}} \operatorname{In} \mathrm{CD}_{3} O D$.
(CD ${ }_{3} \mathrm{OD}, 125 \mathrm{MHz}$) see Table 2; ESIMS (positive-ion model) m/z 777 (MNa^{+}).

Cnidioside A (2): amorphous powder, spectroscopic data agreed with those reported; ${ }^{10}{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 125 \mathrm{MHz}$), Table 3; ESIMS m/z 367 [M - H] ${ }^{-}, 205$ [M - Glu-H] .

Picraquassioside A (3): amorphous powder, spectroscopic data agreed with those reported; ${ }^{11}{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 125$ MHz), Table 3; ESIMS m/z 397 [M - H] ${ }^{-}, 235$ [M - Glu-H] ${ }^{-}$.

3'-Sinapoyl-6-feruloylsucrose (4): amorphous powder; $[\alpha]_{\mathrm{D}}{ }^{25}-69.11^{\circ}$ (c 0.34, MeOH); IR $\nu_{\text {max }}($ in MeOH$) 3386,1701$,

1630, 1597, 1517, 1282, $1055 \mathrm{~cm}^{-1}$; UV $(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon)$ 328 (4.43), 238 (4.32), 202 (4.53) nm; ${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 500$ $\mathrm{MHz})$, Table 1; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right)$, Table 2; HMBC correlations, Figure 1; ESIMS m/z 724 [M] ${ }^{+}$.

Methylcnidioside \mathbf{A} (5): glassy powder, mp $146-147^{\circ} \mathrm{C}$; $[\alpha]_{D}{ }^{25}-46.87^{\circ}(\mathrm{c} \mathrm{0.32} \mathrm{MeOH}$,$) ; IR v_{\max }(\mathrm{KBr}) 3540,3378,1720$, 1629, $1070 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\max }(\log \epsilon) 278$ (3.81), 251 (4.12), 244 (4.13), 206 (4.59) nm; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 2.70$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8\right), 3.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7\right), 3.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 3.53(3 \mathrm{H}$, m, H-2', H-3', H-5'), $3.65\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{OCH}_{3}\right), 3.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 5.5 and $12.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), $3.94\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0\right.$ and $\left.12.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$, $4.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{H}-5)$, 7.36 (1H, s, H-3 or H-6), 7.37 (1H, s, H-6 or H-3), 7.64 (1H, d, $\mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR (CD $3 \mathrm{OD}, 125 \mathrm{MHz}$), Table 3; HMBC correlations $9-\mathrm{OCH}_{3} / \mathrm{C}-9 ; \mathrm{H}-7 / \mathrm{C}-9, \mathrm{C}-6, \mathrm{C}-2, \mathrm{C}-1, \mathrm{C}-8 ; \mathrm{H}-8 / \mathrm{C}-$ 9, C-1, C-7; H-1'/C-2; H-5/C-3a, C-4,C-5a; ESIMS m/z 405 (MNa^{+}); FABMS m/z $405\left(\mathrm{MNa}^{+}\right), 383\left(\mathrm{MH}^{+}\right)$; HRFABMS m/z $383.1342\left(\mathrm{MH}^{+}\right.$, calcd for $\left.\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{9}\right)$.

Methylpicraquassioside \mathbf{A} (6): glassy powder, mp 67$69{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-58.82^{\circ}\left(\mathrm{c} 0.34, \mathrm{MeOH}\right.$); IR $v_{\max }(\mathrm{K} \mathrm{Br}) 3650,3384$, 1701, 1623, $1074 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\max }(\log \epsilon) 278$ (3.37), 251 (4.08), 214 (4.59) nm; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 2.51-$ 2.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-8$), 3.04 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-7$), 3.40 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$), 3.50 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$), $3.65\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{OCH}_{3}\right), 3.71(1 \mathrm{H}$, dd, J $=5.5$ and $\left.12.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0$ and 12.5 Hz , $\left.\mathrm{H}-6^{\prime}\right), 4.05\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{OCH}_{3}\right), 4.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.95$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{H}-5), 7.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5$ $\mathrm{Hz}, \mathrm{H}-4)$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}$), Table 3; HMBC correlations $9-\mathrm{OCH}_{3} / \mathrm{C}-9 ; \mathrm{H}-7 / \mathrm{C}-9, \mathrm{C}-6, \mathrm{C}-2, \mathrm{C}-1, \mathrm{C}-8 ; \mathrm{H}-8 / \mathrm{C}-$ 9, C-1, C-7; 6-OCH $/ \mathrm{C}-6 ; \mathrm{H}-1^{\prime} / \mathrm{C}-2 ; \mathrm{H}-3 / \mathrm{C}-2, \mathrm{C}-3 \mathrm{a}, \mathrm{C}-1, \mathrm{C}-5 \mathrm{a} ;$ H-5/C-3a, C-4,C-5a; ESI MS m/z 413 (MH+), 395, 358, 316, 275,

251; FABMS m/z $413\left(\mathrm{MH}^{+}\right)$, 391; HRFABMS m/z 413.1448 $\left(\mathrm{MH}^{+}\right.$, calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{10}\right)$.

Acknowledgment. This work was supported by a grant from the National Science Council of the Republic of China (NSC-89-2134-B-077-009).

References and Notes

(1) Kong, Y. C.; Lau, C. P.; Wat, K. H.; Ng, K. H.; But, P. P. H.; Cheng, K. F.; Waterman, P. G. Planta Med. 1989, 55, 176-178.
(2) Paulini, H.; Popp, R.; Schimmer, O.; Ratka, O.; Roder, E. Planta Med. 1991, 57, 59-61.
(3) Paulini, H.; Waibel, R.; Kiefer, J .; Schimmer, O. Planta Med. 1991, 57, 82-83.
(4) Rei, J.; Szendrei, K.; Minker, E.; Novak, I. Tetrahedron Lett. 1968, 4395-4396.
(5) Rosa, Z.; Mester, I.; Reisch, J.; Szendrei, K. Planta Med. 1989, 55, 68-69.
(6) Reisch, J.; Szendrei, K.; Novak, I.; Minker, E. Pharmazie 1970, 25, 435-436; Chem. Abstr. 1971, 74, 10363n
(7) Ulubelen, A.; Ertugrul, L.; Birman, H.; Yigit, R.; Erseven, G.; Olgac, V. Phytother. Res. 1994, 8, 233-236.
(8) Bautz, C.; Bohuslavizki, K. H.; Hansel, W.; Koppenhofer, E. Planta Med. 1989, 55, 649.
(9) Miyase, T.; Noguchi, H.; Chen, X. M. J . Nat. Prod. 1999, 62, 993996.
(10) Yahara, S.; Sugimura, C.; Nohara, T.; Niiho, Y.; Nakajima, Y.; Ito, H. Shoyagaku Zasshi 1993, 47, 74-78.
(11) Yoshikawa, K.; Sugawara, S.; Arihara, S. Phytochemistry 1995, 40, 253-256.
(12) Shimazki, N.; Mimaki, Y.; Saahida, Y. Phytochemistry 1991, 30, 1475-1480.
(13) Paskach, T. J.; Lieker, H. P.; Reilly, P. J.; Thielecke, K. Carbohydr. Res. 1991, 215, 1-14.

NP000582Y

[^0]: * To whom correspondence should be addressed. Tel: 886-2-28201999, ext. 6701. Fax: 886-2-28264276. E-mail: ccchen@cma23.nricm.edu.tw.

